8-9 КЛАСС ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Статус документа

Рабочая программа по физике для обучающихся 8-9 классов МАОУ «Лицей №155» разработана на основе Федерального закона «Об образовании в Российской Федерации» № 273-ФЗ от 29 декабря 2012 года. Федерального компонента образования государственного стандарта основного общего образования по физике, учебного плана МАОУ «Лицей №155», авторской программы Е.М Гутник, А.В. Перышкина «Физика 8 класс» и «Физика 9 класс» 2014г. и учебника для общеобразовательных учреждений «Физика 8 класс» и «Физика 9 класс» (авт. А.В. Перышкин) , М. : Дрофа, 2014г. Учебник «Физика. 8 класс.» и «Физика. 9 класс.» автор А. В. Перышкин, для общеобразовательных учреждений, входящий в состав УМК по физике для 8-9 классов, рекомендован Министерством образования Российской Федерации (Приказ Минобрнауки России 31марта 2014 г. № 253 «Об утверждении федеральных перечней учебников, рекомендованных к использованию в образовательном процессе в образовательных учреждениях, реализующих образовательные программы общего образования и имеющих государственную аккредитацию».

Данный учебно-методический комплект реализует задачу концентрического принципа построения учебного материала, который отражает идею формирования целостного представления о физической картине мира.

Содержание образования соотнесено с Федеральным компонентом государственного образовательного стандарта.

Рабочая программа детализирует и раскрывает содержание предметных тем образовательного стандарта, определяет общую стратегию обучения, воспитания и развития учащихся средствами учебного предмета в соответствии с целями изучения физики. Рабочая программа дает распределение учебных часов по разделам курса и последовательность изучения разделов физики с учетом межпредметных и внутрипредметных связей, логики учебного процесса, возрастных особенностей учащихся, определяет набор опытов, демонстрируемых учителем в классе, лабораторных и практических работ, выполняемых учащимися.

Рабочая программа конкретизирует содержание предметных тем образовательного стандарта, дает распределение учебных часов по разделам курса и последовательность изучения разделов физики с учетом межпредметных и внутрипредметных связей, логики учебного процесса, возрастных особенностей учащихся, определяет набор опытов, демонстрируемых учителем в классе, лабораторных и практических работ, выполняемых учащимися.

Структура документа

Рабочая программа по физике включает три раздела: пояснительную записку; основное содержание с распределением учебных часов по разделам курса и последовательностью изучения тем и разделов; требования к уровню подготовки обучающихся.

Общая характеристика учебного предмета

Физика как наука о наиболее общих законах природы, выступая в качестве учебного предмета в школе, вносит существенный вклад в систему знаний об окружающем мире. Она раскрывает роль науки в экономическом и культурном развитии общества, способствует формированию современного научного мировоззрения. Для решения задач формирования основ научного мировоззрения, развития интеллектуальных способностей и познавательных интересов школьников в процессе изучения физики основное внимание следует уделять не передаче суммы готовых знаний, а знакомству с методами научного познания окружающего мира, постановке проблем, требующих от учащихся самостоятельной деятельности по их разрешению. Ознакомление школьников с методами научного познания предполагается проводить при изучении всех разделов курса физики, а не только при изучении специального раздела «Физика и физические методы изучения природы».

Гуманитарное значение физики как составной части общего образовании состоит в том, что она вооружает школьника научным методом познания, позволяющим получать объективные знания об окружающем мире.

Знание физических законов необходимо для изучения химии, биологии, физической географии, технологии, ОБЖ.

Курс физики структурируется на основе рассмотрения различных форм движения материи в порядке их усложнения: механические явления, тепловые явления, электромагнитные явления, квантовые явления. Физика в основной школе изучается на уровне рассмотрения явлений природы, знакомства с основными законами физики и применением этих законов в технике и повседневной жизни.

Ценностные ориентиры содержания учебного предмета

Ценностные ориентиры содержания курса физики в основной школе определяются спецификой физики как науки.

Основу познавательных ценностей составляют научные знания, научные методы познания, а ценностные ориентации, формируемые у учащихся в процессе изучения физики, проявляются:

экспериментальной проверки;

- в признании ценности научного знания, его практической значимости, достоверности;
- в ценности физических методов исследования живой и неживой природы;
- в понимании сложности и противоречивости самого процесса познания как извечного стремления к Истине.

В качестве объектов ценностей труда и быта выступают творческая созидательная деятельность, здоровый образ жизни, а ценностные ориентации содержания курса физики.

Могут рассматриваться как формирование:

- уважительного отношения к созидательной, творческой деятельности;
- понимания необходимости эффективного и безопасного использования различных технических устройств;
- потребности в безусловном выполнении правил безопасного использования веществ в повседневной жизни;
- сознательного выбора будущей профессиональной деятельности.

Курс физики обладает возможностями для формирования коммуникативных ценностей, основу которых составляют процесс общения, грамотная речь, а ценностные ориентации направлены на воспитание у учащихся:

- правильного использования физической терминологии и символики;
- потребности вести диалог, выслушивать мнение оппонента, участвовать в дискуссии; способности открыто выражать и аргументировано отстаивать свою точку зрения.

Цели изучения физики:

Изучение физики в образовательных учреждениях основного общего образования направлено на достижение следующих целей:

- *освоение знаний* о механических, тепловых, электромагнитных и квантовых явлениях; величинах, характеризующих эти явления; законах, которым они подчиняются; методах научного познания природы и формирование на этой основе представлений о физической картине мира;
- овладение умениями проводить наблюдения природных явлений, описывать и обобщать результаты наблюдений, использовать простые измерительные приборы для изучения физических явлений; представлять результаты наблюдений или измерений с помощью таблиц, графиков и выявлять на этой основе эмпирические зависимости; применять полученные знания для объяснения разнообразных природных явлений и процессов, принципов действия важнейших технических устройств, для решения физических задач;
- *развитие* познавательных интересов, интеллектуальных и творческих способностей, самостоятельности в приобретении новых знаний при решении физических задач и выполнении экспериментальных исследований с использованием информационных технологий;
- *воспитание* убежденности в возможности познания природы, в необходимости разумного использования достижений науки и технологий для дальнейшего развития человеческого общества, уважения к творцам науки и техники; отношения к физике как к элементу общечеловеческой культуры;
- *использование полученных знаний и умений* для решения практических задач повседневной жизни, для обеспечения безопасности своей жизни, рационального природопользования и охраны окружающей среды.

• Место предмета в учебном плане

- Федеральный базисный учебный план для образовательных учреждений Российской Федерации отводит **138 часов** для обязательного изучения физики на ступени основного общего образования. В том числе в 8 классе -**70 ч.** и в 9 классе -**68** учебных часов из расчета **2** учебных часа в неделю.
- Количество плановых контрольных работ 12 (5-8 кл, 5-9 кл)
- Количество плановых лабораторных работ 16(10 8 кл, 5 9 кл)

Результаты изучения курса

Личностными результатами обучения физике в основной школе являются:

- сформированность познавательных интересов на основе развития интеллектуальных и творческих способностей учащихся;
- убежденность в возможности познания природы, в необходимости разумного использования достижений науки и технологий для дальнейшего развития человеческого общества, уважение к творцам науки и техники, отношение к физике как элементу общечеловеческой культуры;
 - самостоятельность в приобретении новых знаний и практических умений;
 - готовность к выбору жизненного пути в соответствии с собственными интересами и возможностями;
 - мотивация образовательной деятельности школьников на основе личностно-ориентированного подхода;
 - формирование ценностных отношений друг к другу, учителю, авторам открытий и изобретений, результатам обучения.

Метапредметными результатами обучения физике в основной школе являются:

- овладение навыками самостоятельного приобретения новых знаний, организации учебной деятельности, постановки целей, планирования, самоконтроля и оценки результатов своей деятельности, умениями предвидеть возможные результаты своих действий;
- понимание различий между исходными фактами и гипотезами для их объяснения, теоретическими моделями и реальными объектами, овладение универсальными учебными действиями на примерах гипотез для объяснения известных фактов и экспериментальной проверки выдвигаемых гипотез, разработки теоретических моделей процессов или явлений;
- формирование умений воспринимать, перерабатывать и предъявлять информацию в словесной, образной, символической формах, анализировать и перерабатывать полученную информацию в соответствии с поставленными задачами, выделять основное содержание прочитанного текста, находить в нем ответы на поставленные вопросы и излагать его;
- приобретение опыта самостоятельного поиска, анализа и отбора информации с использованием различных источников и новых информационных технологий для решения познавательных задач;
- развитие монологической и диалогической речи, умения выражать свои мысли и способности выслушивать собеседника, понимать его точку зрения, признавать право другого человека на иное мнение;
 - освоение приемов действий в нестандартных ситуациях, овладение эвристическими методами решения проблем;
- формирование умений работать в группе с выполнением различных социальных ролей, представлять и отстаивать свои взгляды и убеждения, вести дискуссию.

Предметные результаты обучения физике в основной школе представлены в содержании курса по темам.

8 класс (70 ч, 2 ч в неделю)

Тепловые явления

- понимание и способность объяснять физические явления: конвекция, излучение, теплопроводность, изменение внутренней энергии тела в результате теплопередачи или работы внешних сил, испарение (конденсация) и плавление (отвердевание) вещества, охлаждение жидкости при испарении, кипение, выпадение росы; умение измерять: температуру, количество теплоты, удельную теплоемкость вещества, удельную теплоту плавления вещества, влажность воздуха;
- владение экспериментальными методами исследования: зависимости относительной влажности воздуха от давления водяного пара, содержащегося в воздухе при данной температуре; давления насыщенного водяного пара; определения удельной теплоемкости вещества;
- понимание принципов действия конденсационного и волосного гигрометров, психрометра, двигателя внутреннего сгорания, паровой турбины и способов обеспечения безопасности при их использовании;
- понимание смысла закона сохранения и превращения энергии в механических и тепловых процессах и умение применять его на практике;
- овладение способами выполнения расчетов для нахождения: удельной теплоемкости, количества теплоты, необходимого для нагревания тела или выделяемого им при охлаждении, удельной теплоты сгорания топлива, удельной теплоты плавления, влажности воздуха, удельной теплоты парообразования и конденсации, КПД теплового двигателя;
 - умение использовать полученные знания в повседневной жизни (экология, быт, охрана окружающей среды).

Электрические явления

- понимание и способность объяснять физические явления: электризация тел, нагревание проводников электрическим током, электрический ток в металлах, электрические явления с позиции строения атома, действия электрического тока;
 - умение измерять: силу электрического тока, электрическое напряжение, электрический заряд, электрическое сопротивление;
- владение экспериментальными методами исследования зависимости: силы тока на участке цепи от электрического напряжения, электрического сопротивления проводника от его длины, площади поперечного сечения и материала;
- понимание смысла основных физических законов и умение применять их на практике: закон сохранения электрического заряда, закон Ома для участка цепи, закон Джоуля—Ленца;
- понимание принципа действия электроскопа, электрометра, гальванического элемента, аккумулятора, фонарика, реостата, конденсатора, лампы накаливания и способов обеспечения безопасности при их использовании;
- владение способами выполнения расчетов для нахождения: силы тока, напряжения, сопротивления при параллельном и последовательном соединении проводников, удельного сопротивления проводника, работы и мощности электрического тока, количества теплоты, выделяемого проводником с током, емкости конденсатора, работы электрического поля конденсатора, энергии конденсатора;
- умение использовать полученные знания в повседневной жизни (экология, быт, охрана окружающей среды, техника безопасности).

Электромагнитные явления

- понимание и способность объяснять физические явления: намагниченность железа и стали, взаимодействие магнитов, взаимодействие проводника с током и магнитной стрелки, действие магнитного поля на проводник с током;
 - владение экспериментальными методами исследования зависимости магнитного действия катушки от силы тока в цепи;
- умение использовать полученные знания в повседневной жизни (экология, быт, охрана окружающей среды, техника безопасности).

Световые явления

- понимание и способность объяснять физические явления: прямолинейное распространение света, образование тени и полутени, отражение и преломление света;
 - умение измерять фокусное расстояние собирающей линзы, оптическую силу линзы;
- владение экспериментальными методами исследования зависимости: изображения от расположения лампы на различных расстояниях от линзы, угла отражения от угла падения света на зеркало;
- понимание смысла основных физических законов и умение применять их на практике: закон отражения света, закон преломления света, закон прямолинейного распространения света;
- различать фокус линзы, мнимый фокус и фокусное расстояние линзы, оптическую силу линзы и оптическую ось линзы, собирающую и рассеивающую линзы, изображения, даваемые собирающей и рассеивающей линзой;
 - умение использовать полученные знания в повседневной жизни (экология, быт, охрана окружающей среды).

9 класс (68 ч, 2ч в неделю)

Законы взаимодействия и движения тел

- понимание и способность описывать и объяснять физические явления: поступательное движение, смена дня и ночи на Земле, свободное падение тел, невесомость, движение по окружности с постоянной по модулю скоростью;
- знание и способность давать определения/описания физических понятий: относительность движения, геоцентрическая и гелиоцентрическая системы мира; [первая космическая скорость], реактивное движение; физических моделей: материальная точка, система отсчета; физических
- В квадратные скобки заключен материал, не являющийся обязательным для изучения.величин: перемещение, скорость равномерного прямолинейного движения, мгновенная скорость и ускорение при равноускоренном прямолинейном движении, скорость и центростремительное ускорение при равномерном движении тела по окружности, импульс;
- понимание смысла основных физических законов: законы Ньютона, закон всемирного тяготения, закон сохранения импульса, закон сохранения энергии и
 - умение применять их на практике;
 - умение приводить примеры технических устройств и живых организмов, в основе перемещения которых лежит принцип

реактивного движения; знание и умение объяснять устройство и действие космических ракет-носителей;

- умение измерять: мгновенную скорость и ускорение при равноускоренном прямолинейном движении, центростремительное ускорение при равномерном движении по окружности;
 - умение использовать полученные знания в повседневной жизни (быт, экология, охрана окружающей среды).

Механические колебания и волны. Звук

- понимание и способность описывать и объяснять физические явления: колебания математического и пружинного маятников, резонанс (в том числе звуковой), механические волны, длина волны, отражение звука, эхо; знание и способность давать определения физических понятий: свободные колебания, колебательная система, маятник, затухающие колебания, вынужденные колебания, звук и условия его распространения; физических величин: амплитуда, период и частота колебаний, собственная частота колебательной системы, высота, [тембр], громкость звука, скорость звука; физических моделей: [гармонические колебания], математический маятник;
 - владение экспериментальными методами исследования зависимости периода и частоты колебаний маятника от длины его нити.

Электромагнитное поле

- понимание и способность описывать и объяснять физические явления/процессы: электромагнитная индукция, самоиндукция, преломление света, дисперсия света, поглощение и испускание света атомами, возникновение линейчатых спектров испускания и поглощения;
- знание и способность давать определения/описания физических понятий: магнитное поле, линии магнитной индукции, однородное и неоднородное магнитное поле, магнитный поток, переменный электрический ток, электромагнитное поле, электромагнитные волны, электромагнитные колебания, радиосвязь, видимый свет; физических величин: магнитная индукция, индуктивность, период, частота и амплитуда электромагнитных колебаний, показатели преломления света;
- знание формулировок, понимание смысла и умение применять закон преломления света и правило Ленца, квантовых постулатов Бора;
- знание назначения, устройства и принципа действия технических устройств: электромеханический индукционный генератор переменного тока, трансформатор, колебательный контур, детектор, спектроскоп, спектрограф;
 - —[понимание сути метода спектрального анализа и его возможностей].

Строение атома и атомного ядра

- понимание и способность описывать и объяснять физические явления: радиоактивность, ионизирующие излучения;
- знание и способность давать определения/описания физических понятий: радиоактивность, альфа-, бета- и гамма-частицы; физических моделей: модели строения атомов, предложенные Д. Томсоном и Э. Резерфордом; протонно-нейтронная модель атомного ядра, модель процесса деления ядра атома урана; физических величин: поглощенная доза излучения, коэффициент качества, эквивалентная доза, период полураспада;
- умение приводить примеры и объяснять устройство и принцип действия технических устройств и установок: счетчик Гейгера, камера Вильсона, пузырьковая камера, ядерный реактор на медленных нейтронах;

- умение измерять: мощность дозы радиоактивного излучения бытовым дозиметром;
- знание формулировок, понимание смысла и умение применять: закон сохранения массового числа, закон сохранения заряда, закон радиоактивного распада, правило смещения;
- владение экспериментальными методами исследования в процессе изучения зависимости мощности излучения продуктов распада радона от времени;
 - понимание сути экспериментальных методов исследования частиц;
- умение использовать полученные знания в повседневной жизни (быт, экология, охрана окружающей среды, техника безопасности и др.).

Строение и эволюция Вселенной

- умение пользоваться методами научного исследования явлений природы: проводить наблюдения, планировать и выполнять эксперименты, обрабатывать результаты измерений, представлять результаты измерений с помощью таблиц, графиков и формул, обнаруживать зависимости между физическими величинами, объяснять результаты и делать выводы, оценивать границы погрешностей результатов измерений;
- развитие теоретического мышления на основе формирования умений устанавливать факты, различать причины и следствия, использовать физические модели, выдвигать гипотезы, отыскивать и формулировать доказательства выдвинутых гипотез.
 - представление о составе, строении, происхождении и возрасте Солнечной системы;
 - умение применять физические законы для объяснения движения планет Солнечной системы;
- знать, что существенными параметрами, отличающими звезды от планет, являются их массы и источники энергии (термоядерные реакции в недрах звезд и радиоактивные в недрах планет);
- сравнивать физические и орбитальные параметры планет земной группы с соответствующими параметрами планет-гигантов и находить в них общее и различное;
- объяснять суть эффекта X. Доплера; формулировать и объяснять суть закона Э. Хаббла, знать, что этот закон явился экспериментальным подтверждением модели нестационарной Вселенной, открытой А. А. Фридманом.

Основное содержание

Физика и физические методы изучения природы

Физика — наука о природе. Наблюдение и описание физических явлений. Физические приборы. Физические величины и их измерение. *Погрешности измерений*. Международная система единиц. Физический эксперимент и физическая теория. *Физические модели*. Роль математики в развитии физики. Физика и техника. Физика и развитие представлений о материальном мире.

Демонстрации

Примеры механических, тепловых, электрических, магнитных и световых явлений. Физические приборы.

Лабораторные работы и опыты

Определение цены деления шкалы измерительного прибора. 1Измерение длины. Измерение объема жидкости и твердого тела.

Измерение температуры

Механические явления

Механическое движение. *Относительность движения*. *Система отсчета*. Траектория. Путь. Прямолинейное равномерное движение. Скорость равномерного прямолинейного движения. Методы измерения расстояния, времени и скорости.

Неравномерное движение. Мгновенная скорость. Ускорение. Равноускоренное движение. Свободное падение тел. Графики зависимости пути и скорости от времени.

Равномерноедвижениепо окружности. Период и частота обращения.

Явление инерции. Первый закон Ньютона. Масса тела. Плотность вещества. Методы измерения массы и плотности.

Взаимодействие тел. Сила. Правило сложения сил.

Сила упругости. Методы измерения силы.

Второй закон Ньютона. Третий закон Ньютона.

Сила тяжести. Закон всемирного тяготения. Искусственные спутники Земли. Вес тела. Невесомость. Геоцентрическая и гелиоцентрическая системы мира.

Сила трения.

Момент силы. Условия равновесия рычага. Центр тяжести тела. Условия равновесия тел.

Импульс. Закон сохранения импульса. Реактивное движение.

Работа. Мощность. Кинетическая энергия. Потенциальная энергия взаимодействующих тел. Закон сохранения механической энергии. Простые механизмы. Коэффициент полезного действия. Методы измерения энергии, работы и мощности.

Давление. Атмосферное давление. Методы измерения давления. Закон Паскаля. *Гидравлические машины*. Закон Архимеда. *Условие плавания тел*.

Механические колебания. Период, частота и амплитуда колебаний. Период колебаний математического и пружинного маятников.

Механические волны. Длина волны. Звук.

Демонстрации

Равномерное прямолинейное движение. Относительность движения. Равноускоренное движение. Свободное падение тел в трубке Ньютона. Направление скорости при равномерном движении по окружности. Явление инерции. Взаимодействие тел. Зависимость силы упругости от деформации пружины. Сложение сил. Сила трения. Второй закон Ньютона. Третий закон Ньютона. Невесомость. Закон сохранения импульса. Реактивное движение. Изменение энергии тела при совершении работы. Превращения механической энергии из одной формы в другую. Зависимость давления твердого тела на опору от действующей силы и площади опоры. Обнаружение атмосферного давления. Измерение атмосферного давления барометром - анероидом. Закон Паскаля. Гидравлический пресс. Закон Архимеда. Простые механизмы. Механические колебания. Механические волны. Звуковые колебания. Условия распространения звука.

Лабораторные работы и опыты

Измерение скорости равномерного движения. Изучение зависимости пути от времени при равномерном иравноускоренном движении. Измерение ускорения прямолинейного равноускоренного движения. Измерение силы динамометром. Сложение сил, направленных вдоль одной прямой.

Сложение сил, направленных под углом. Исследование зависимости силы тяжести от массы тела. Исследование зависимости силы упругости от удлинения пружины. Измерение жесткости пружины. Исследование силы трения скольжения. Измерение коэффициента трения скольжения. Нахождение центра тяжести плоского тела. Вычисление КПД наклонной плоскости. Измерение кинетической энергии тела. Измерение изменения потенциальной энергии тела. Измерение мощности. Измерение архимедовой силы. Изучение условий плавания тел. Изучение зависимости периода колебаний маятника от длины нити. Измерение ускорения свободного падения с помощью маятника. Изучение зависимости периода колебаний груза на пружине от массы груза.

Тепловые явления

Строение вещества. Тепловое движение атомов и молекул. Броуновское движение. Диффузия. Взаимодействие частиц вещества. Модели строения газов, жидкостей и твердых тел и объяснение свойств вещества на основе этих моделей.

Тепловое движение. Тепловое равновесие. Температура и ее измерение. Связь температуры со средней скоростью теплового хаотического движения частиц.

Внутренняя энергия. Работа и теплопередача как способы изменения внутренней энергии тела. Виды теплопередачи: теплопроводность, конвекция, излучение. Количество теплоты. Удельная теплоемкость. Закон сохранения энергии в тепловых процессах. Необратимость процессов теплопередачи.

Испарение и конденсация. Насыщенный пар. Влажность воздуха. Кипение. *Зависимость температуры кипения от давления*. Плавление и кристаллизация. *Удельная теплота плавления и парообразования*. *Удельная теплота сгорания*. Расчет количества теплоты при теплообмене.

Принципы работы тепловых двигателей. Паровая турбина. Двигатель внутреннего сгорания. Реактивный двигатель. КПД теплового двигателя. Объяснение устройства и принципа действия холодильника.

Преобразования энергии в тепловых машинах. Экологические проблемы использования тепловых машин.

Демонстрации

Сжимаемость газов. Диффузия в газах и жидкостях. Модель хаотического движения молекул. Модель броуновского движения.

Сохранение объема жидкости при изменении формы сосуда. Сцепление свинцовых цилиндров. Принцип действия термометра.

Изменение внутренней энергии тела при совершении работы и при теплопередаче. Теплопроводность различных материалов.

Конвекция в жидкостях и газах. Теплопередача путем излучения. Сравнение удельных теплоемкостей различных веществ.

Явление испарения. Кипение воды. Постоянство температуры кипения жидкости. Явления плавления и кристаллизации.

Измерение влажности воздуха психрометром или гигрометром. Устройство четырехтактного двигателя внутреннего сгорания.

Устройство паровой турбины

Лабораторные работы и опыты

Исследование изменения со временем температуры остывающей воды. Изучение явления теплообмена.

Измерение удельной теплоемкости вещества. Измерение влажности воздуха.

Исследование зависимости объема газа от давления при постоянной температуре.

Электрические и магнитные явления

Электризация тел. Электрический заряд. Два вида электрических зарядов. Взаимодействие зарядов. Закон сохранения электрического заряда.

Электрическое поле. Действие электрического поля на электрические заряды. Проводники, диэлектрики и полупроводники. Конденсатор. Энергия электрического поля конденсатора.

Постоянный электрический ток. *Источники постоянного тока*. Действия электрического тока. Сила тока. Напряжение. Электрическое сопротивление. Электрическая цепь.Закон Ома для участка электрической цепи. *Последовательное и параллельное соединения проводников*. Работа и мощность электрического тока. Закон Джоуля-Ленца. *Носители электрических зарядов в металлах, полупроводниках, электролитах и газах. Полупроводниковые приборы*.

Опыт Эрстеда. Магнитное поле тока. Взаимодействие постоянных магнитов. *Магнитное поле Земли.Электромагнит*. Действие магнитного поля на проводник с током. Сила Ампера. Электродвигатель. Электромагнитное реле.

Демонстрации

Электризация тел. Два рода электрических зарядов. Устройство и действие электроскопа. Проводники и изоляторы.

Электризация через влияние Перенос электрического заряда с одного тела на другое. Закон сохранения электрического заряда.

Устройство конденсатора. Энергия заряженного конденсатора. Источники постоянного тока. Составление электрической цепи.

Электрический ток в электролитах. Электролиз. Электрический ток в полупроводниках. Электрические свойства полупроводников.

Электрический разряд в газах. Измерение силы тока амперметром.

Наблюдение постоянства силы тока на разных участках неразветвленной электрической цепи.

Измерение силы тока в разветвленной электрической цепи. Измерение напряжения вольтметром.

Изучение зависимости электрического сопротивления проводника от его длины, площади поперечного сечения и материала.

Удельное сопротивление. Реостат и магазин сопротивлений. Измерение напряжений в последовательной электрической цепи.

Зависимость силы тока от напряжения на участке электрической цепи. Опыт Эрстеда. Магнитное поле тока.

Действие магнитного поля на проводник с током. Устройство электродвигателя.

Лабораторные работы и опыты

Наблюдение электрического взаимодействия тел Сборка электрической цепи и измерение силы тока и напряжения. Исследование зависимости силы тока в проводнике от напряжения на его концах при постоянном сопротивлении. Исследование зависимости силы тока в электрической цепи от сопротивления при постоянном напряжении. Изучение последовательного соединения проводников.

Изучение параллельного соединения проводников. Измерение сопротивление при помощи амперметра и вольтметра.

Изучение зависимости электрического сопротивления проводника от его длины, площади поперечного сечения и материала.

Удельное сопротивление. Измерение работы и мощности электрического тока. Изучение электрических свойств жидкостей.

Изготовление гальванического элемента. Изучение взаимодействия постоянных магнитов. Исследование магнитного поля прямого проводника и катушки с током. Исследование явления намагничивания железа. Изучение принципа действия электромагнитного реле. Изучение действия магнитного поля на проводник с током. Изучение принципа действия электродвигателя.

Электромагнитные колебания и волны

Электромагнитная индукция. Опыты Фарадея. Правило Ленца. Самоиндукция. Электрогенератор. Переменный ток. Трансформатор. Передача электрической энергии на расстояние. Колебательный контур. Электромагнитные колебания. Электромагнитные волны и их свойства. Скорость распространения электромагнитных волн. Принципы радиосвязи и телевидения. Свет - электромагнитная волна. Дисперсия света. Влияние электромагнитных излучений на живые организмы. Прямолинейное распространение света. Отражение и преломление света. Закон отражения света. Плоское зеркало. Линза. Фокусное расстояние линзы. Формула линзы. Оптическая сила линзы. Глаз как оптическая система. Оптические приборы.

Демонстрации

Электромагнитная индукция. Правило Ленца. Самоиндукция. Получение переменного тока при вращении витка в магнитном поле. Устройство генератора постоянного тока. Устройство генератора переменного тока. Устройство трансформатора. Передача электрической энергии. Электромагнитные колебания. Свойства электромагнитных волн. Принцип действия микрофона и громкоговорителя. Принципы радиосвязи. Источники света. Прямолинейное распространение света. Закон отражения света. Изображение в плоском зеркале. Преломление света. Ход лучей в собирающей линзе. Ход лучей в рассеивающей линзе. Получение изображений с помощью линз. Принцип действия проекционного аппарата и фотоаппарата. Модель глаза. Дисперсия белого света. Получение белого света при сложении света разных цветов.

Лабораторные работы и опыты

Изучение явления электромагнитной индукции. Изучение принципа действия трансформатора. Изучение явления распространения света. Исследование зависимости угла отражения от угла падения света. Изучение свойств изображения в плоском зеркале.

Исследование зависимости угла преломления от угла падения света. Измерение фокусного расстояния собирающей линзы. Получение

изображений с помощью собирающей линзы. Наблюдение явления дисперсии света.

Квантовые явления

Опыты Резерфорда. Планетарная модель атома. Линейчатые оптические спектры. Поглощение и испускание света атомами. Состав атомного ядра. Зарядовое и массовое числа. Ядерные силы. Энергия связи атомных ядер. Радиоактивность. Альфа-, бета- и гамма-излучения. Период полураспада. Методы регистрации ядерных излучений. Ядерные реакции. Деление и синтез ядер. Источники энергии Солнца и звезд. Ядерная энергетика. Дозиметрия. Влияние радиоактивных излучений на живые организмы. Экологические проблемы работы атомных электростанций.

Демонстрации

Модель опыта Резерфорда. Наблюдение треков частиц в камере Вильсона. Устройство и действие счетчика ионизирующих частиц. *Лабораторные работы и опыты* Наблюдение линейчатых спектров излучения.

Требования к уровню подготовки обучающихся по данной учебной программе и оценка достижения планируемых результатов В результате изучения физики ученик должен

знать/понимать

- *смысл понятий:* физическое явление, физический закон, вещество, взаимодействие, электрическое поле, магнитное поле, волна, атом, атомное ядро, ионизирующие излучения;
- смысл физических величин: путь, скорость, ускорение, масса, плотность, сила, давление, импульс, работа, мощность, кинетическая энергия, потенциальная энергия, коэффициент полезного действия, внутренняя энергия, температура, количество теплоты, удельная теплоемкость, влажность воздуха, электрический заряд, сила электрического тока, электрическое напряжение, электрическое сопротивление, работа и мощность электрического тока, фокусное расстояние линзы;
- смысл физических законов: Ньютона, всемирного тяготения, сохранения импульса и механической энергии, сохранения энергии в тепловых процессах, сохранения электрического заряда, Ома для участка электрической цепи, Джоуля-Ленца, прямолинейного распространения света, отражения света;

уметь

- описывать и объяснять физические явления: равномерное прямолинейное движение, равноускоренное прямолинейное движение, механические колебания и волны, теплопроводность, конвекцию, излучение, испарение, конденсацию, кипение, плавление, кристаллизацию, электризацию тел, взаимодействие электрических зарядов, взаимодействие магнитов, действие магнитного поля на проводник с током, тепловое действие тока, электромагнитную индукцию, отражение, преломление и дисперсию света;
- *использовать физические приборы и измерительные инструменты для измерения физических величин:* расстояния, промежутка времени, массы, силы, давления, температуры, влажности воздуха, силы тока, напряжения, электрического сопротивления, работы и мощности электрического тока;
- представлять результаты измерений с помощью таблиц, графиков и выявлять на этой основе эмпирические зависимости: пути от времени, силы упругости от удлинения пружины, силы трения от силы нормального давления, периода колебаний маятника от длины нити, периода колебаний груза на пружине от массы груза и от жесткости пружины, температуры остывающего тела от времени, силы тока от напряжения на участке цепи, угла отражения от угла падения света, угла преломления от угла падения света;
- выражать результаты измерений и расчетов в единицах Международной системы;
- приводить примеры практического использования физических знаний о механических, тепловых, электромагнитных и квантовых явлениях;
- решать задачи на применение изученных физических законов;

• осуществлять самостоятельный поиск информации естественнонаучного содержания с использованием различных источников (учебных текстов, справочных и научно-популярных изданий, компьютерных баз данных, ресурсов Интернета), ее обработку и представление в разных формах (словесно, с помощью графиков, математических символов, рисунков и структурных схем);

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

- обеспечения безопасности в процессе использования транспортных средств, электробытовых приборов, электронной техники;
- контроля за исправностью электропроводки, водопровода, сантехники и газовых приборов в квартире;
- рационального применения простых механизмов;
- оценки безопасности радиационного фона.

Оценка достижения планируемых результатов освоения учебной програм

МЫ

Описание физических явлений и процессов с использованием понятийного аппарата школьного курса физики (величины, законы, модели, понятия).

Применение изученных физических величин и законов для объяснения физических явлений и решения задач.

Планируемый результат: использовать при выполнении учебных задач научно-популярную литературу о физических явлениях, справочные издания (на бумажных и электронных носителях и ресурсы Internet).

Умения, характеризующие достижение планируемого результата:

Использовать при выполнении учебных задач справочные издания.

При чтении научно-популярных текстов отвечать на вопросы по содержанию текста.

Понимать смысл физических терминов при чтении научно-популярных текстов.

Понимать информацию, представленную в виде схем, графиков и диаграмм и преобразовывать информацию из одной знаковой системы в другую.

Оценка достижений планируемых результатов:

о физических явлениях:

признаки явления, по которым оно обнаруживается;

условия, при которых протекает явление;

связь данного явлении с другими;

объяснение явления на основе научной теории;

примеры учета и использования его на практике;

о физических опытах:

цель, схема, условия, при которых осуществлялся опыт, ход и результаты опыта;

о физических понятиях, в том числе и о физических величинах:

явления или свойства, которые характеризуются данным понятием (величиной);

определение понятия (величины);

формулы, связывающие данную величину с другими;

единицы физической величины;

способы измерения величины;

о законах:

формулировка и математическое выражение закона;

опыты, подтверждающие его справедливость;

примеры учета и применения на практике;

условия применимости (для старших классов);

о физических теориях:

опытное обоснование теории;

основные понятия, положения, законы, принципы;

основные следствия;

практические применения;

границы применимости (для старших классов);

о приборах, механизмах, машинах:

назначение; принцип действия и схема устройства;

применение и правила пользования прибором.

Физические измерения.

Определение цены деления и предела измерения прибора.

Определять абсолютную погрешность измерения прибора.

Отбирать нужный прибор и правильно включать его в установку.

Снимать показания прибора и записывать их с учетом абсолютной погрешности измерения. Определять относительную погрешность измерений.

Следует учитывать, что в конкретных случаях не все требования могут быть предъявлены учащимся, например знание границ применимости законов и теорий, так как эти границы не всегда рассматриваются в курсе физики средней школы.

Оценке подлежат умения:

- применять понятия, законы и теории для объяснения явлений природы, техники; оценивать влияние технологических процессов на экологию окружающей среды, здоровье человека и других организмов;
- самостоятельно работать с учебником, научно-популярной литературой, информацией в СМИ и Интернете;
- решать задачи на основе известных законов и формул;
- пользоваться справочными таблицами физических величин.

При оценке лабораторных работ учитываются умения:

- планировать проведение опыта;
- собирать установку по схеме;
- пользоваться измерительными приборами;
- проводить наблюдения, снимать показания измерительных приборов, составлять таблицы зависимости величин и строить графики;
- оценивать и вычислять погрешности измерений;
- составлять краткий отчет и делать выводы по проделанной работе.

Следует обращать внимание на овладение учащимися правильным употреблением, произношением и правописанием физических терминов, на развитие умений связно излагать изучаемый материал.

Оценка ответов учащихся

Оценка «5» ставится в том случае, если учащийся:

- обнаруживает верное понимание физической сущности рассматриваемых явлений и закономерностей, законов и теорий, дает точное определение и истолкование основных понятий, законов, теорий, а также правильное определение физических величин, их единиц и способов измерения;
- правильно выполняет чертежи, схемы и графики, сопутствующие ответу;
- строит ответ по собственному плану, сопровождает рассказ новыми примерами, умеет применить знания в новой ситуации при выполнении практических заданий;
- может установить связь между изучаемым и ранее изученным материалом по курсу физики, а также с материалом, усвоенным при изучении других предметов.

Оценка «4» ставится, если ответ удовлетворяет основным требованиям к ответу на оценку «5», но учащийся не использует собственный план ответа, новые примеры, не применяет знания в новой ситуации, не использует связи с ранее изученным материалом и материалом, усвоенным при изучении других предметов.

Оценка «З» ставится, если большая часть ответа удовлетворяет требованиям к ответу на оценку «4», но в ответе обнаруживаются отдельные пробелы, не препятствующие дальнейшему усвоению программного материала; учащийся умеет применять полученные

знания при решении простых задач с использованием готовых формул, но затрудняется при решении задач, требующих преобразования формул.

Оценка «2» ставится в том случае, если учащийся не овладел основными знаниями и умениями в соответствии с требованиями программы.

В письменных контрольных работах учитывается также, какую часть работы выполнил ученик.

Оценка лабораторных работ:

Оценка «5» ставится в том случае, если учащийся:

- выполнил работу в полном объеме с соблюдением необходимой последовательности проведения опытов и измерений;
- самостоятельно и рационально смонтировал необходимое оборудование, все опыты провел в условиях и режимах, обеспечивающих получение правильных результатов и выводов; соблюдал требования безопасности труда;
- в отчете правильно и аккуратно выполнял все записи, таблицы, рисунки, чертежи, графика, вычисления;
- правильно выполнил анализ погрешностей (IX класс).

Оценка «4» ставится в том случае, если были выполнены требования к оценке «5», но учащийся допустил недочеты или негрубые ошибки Оценка «3» ставится, если результат выполненной части таков, что позволяет получить правильные выводы, но в ходе проведения опыта и измерений были допущены ошибки.

Оценка «2» ставится, если результаты не позволяют сделать правильных выводов, если опыты, измерения, вычисления, наблюдения производились неправильно.

Во всех случаях оценка снижается, если ученик не соблюдал требования безопасности труда.